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ABSTRACT. Let G be the free product of finitely many cyclic groups of prime 
order. Let Mn denote the number of subgroups of G of index n. Let Cp 
denote the cyclic group of order p, and Cpk the free product of k cyclic 
groups of order p . We show that Mn is odd if C4 occurs as a factor in the 
free product decomposition of G. We also show that if C3 occurs as a factor 
in the free product decomposition of G and if C2 is either not present or 
occurs to an even power, then Mn 0 0 mod 3 if and only if n -2 mod 4. 
If, on the other hand, C3 occurs as a factor, and C2 also occurs as a factor, 
but to an odd power, then all the Mn are -1 mod 3. Several conjectures are 
stated. 

1. INTRODUCTION 

A recurrence formula for the number of subgroups of a given index in a 
free group of finite rank was given by M. Hall [5]. This was generalized to the 
case of a free product of finitely many cyclic groups by I. M. S. Dey [2], and 
to the general case of an arbitrary group by K. Wohlfahrt [9]. These numbers 
possess a wealth of fascinating arithmetic properties. For instance, the number 
of subgroups of index n in the classical modular group is odd if and only if n 
is of the form 2k - 3 or 2(2k - 3) [6]. To cite another example, the number 
of subgroups of index 2p - 1 in the Hecke group Hp, p prime, is 2p - 1 [4]. 
That these numbers are interesting is evident from Table 1 in the Appendix 
(included here as a representative example) which lists them for H41, for all 
indices < 100. 

In this paper we prove a number of congruence properties, and state several 
conjectures. 

Cp will denote the cyclic group of order p. Ck will stand for the free 
product Cp * C * Cp of k copies of Cp . Then the classical modular group 
is C2 * C3, and Hp is C2 * Cp . 

2. THE HALL AND DEY FORMULAS 

Let M, denote the number of subgroups of index n in some specified group 
G. Then, if G is a free group of rank r, M1 = 1 and 
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n-1 

(1) Min = ln(nf!)1 -Z (n - i)! rM1, n > 2. 
i=1 

If G= Cpl * CP2 **C pk,then Ml = 1 and 

(2) Mn= h(n) n-I h(n - i)M >2 (2) Mn (n-i! (n-i)!1' 

where 
h(n) = TpI (n) TP2(n) TPk (n), 

and TA (n) is the number of homomorphisms of Cp, into the symmetric group 
Sn . 

Both (1) and (2) have an equivalent formulation in terms of generating func- 
tions. 

For Dey's formula (2), let 
00 00 

(3) g= Mn+ xn, f=Z (!)Xn 
n=O n=O 

where h(0) is defined to be 1. Then 

(4) t f. 
This simple expression is useful in a variety of counting arguments (see [3, 4], 
for example). 

3. CONGRUENCE PROPERTIES, AND THE THEOREMS 

Parity phenomena are rather obvious for free groups of finite rank. In fact, 
all the Mn are odd, in this case. This follows trivially by induction from Hall's 
formula (1), when considered modulo 2. In fact, the behavior of these numbers 
can be determined (in principle) for any modulus, since (1) then becomes a lin- 
ear recurrence of fixed length with constant coefficients. For example, choosing 
5 as the modulus and the rank as 2, the recurrence becomes 

(5) Mn=4Mn-i+3Mn-2+4Mn-3+Mn-4, n>5, 

with initial values 

MI =_ I1, M2=_3 , M3=_ 3, M4=_ 1. 

The period of this sequence is 62, which determines the behavior of the indices 
modulo 5 completely. For example, this implies that Mn is divisible by 5 if 
and only if 

n=9, 12, 19, 24, 33, 39, 41, 42, 
45, 47, 49, 52, 58, 59, 60 mod 62. 

In the same way, it is easy to show that for a free group of rank p, where p 
is a prime, Mn satisfies Mn 1_ mod p for all n. 

The group-theoretic significance of results of this type is rather obscure. 
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Establishing congruence patterns for free products tends to be more challeng- 
ing, since equation (2) is less convenient than (1) for that purpose. Instead of 
appealing to (2) directly, W. W. Stothers in [6] derives a formula for M, for 
the modular group via coset diagrams. This formula is then used to prove the 
parity result mentioned above. These methods were extended in [8] and [7]. 

An interesting alternative approach was given by C. Godsil, W. Imrich, and 
R. Razen in [3]. They obtain a recurrence formula for T2(n)T3(n), and from this 
a recurrence for Mn via equations (3) and (4). Congruence properties are then 
deduced from this recurrence. The same reference mentions that the number 
of free subgroups of index n in SL2(Z) is always even. This follows from a 
formula given by W. Imrich in [8]. 

T. Muller has found that SL2(Z) exhibits the same parity pattern as the 
modular group [10], and more generally that similar patterns hold for a variety 
of free products of finite groups for which the amalgamated subgroup has odd 
cardinality. 

In what follows we will show that Dey's formula reduces to a linear recurrence 
modulo p when the factors are appropriately chosen. This enables us to prove 
the following theorems: 

Theorem 1. Suppose that C24 occurs as a factor in the free product decomposition 
of G. Then Mn is oddfor all n > 1. 

Theorem 2. Suppose that C33 occurs as a factor in the free product decomposition 
of G. If C2 does not occur as a factor, or enters to an even power, then Mn 0 
mod 3 if and only if n _ 2 mod 4. If on the other hand, C2 enters to an odd 
power, then Mn _ 1 mod 3 for all n, so that Mn is never divisible by 3 in this 
case. 

The proofs require a number of lemmas. 

Lemma 1. The number T2(n)4 contains a higher power of 2 in its prime power 
factorization than does n !, for all n > 1. 
Proof. Let 2rn be the exact power of 2 dividing n!, and let 2k be the largest 
power of 2 less than or equal to n, so that 

rn=[2]+ f2-+ + 2k] 

Clearly, if n = 2k, then rn=2k 1 =n-1,but otherwise, rn < n - 1. 
From S. Chowla et al. [1] we have z2(n) 0_ mod 2S for any s such that 

s < (n +2)/4 . Thus, if n =_ 2 mod 4, we may choose s = (n +2)/4 and deduce 
that z2(n)4 =_ 0 mod 2n+2. Since n + 2 > rj for j = n, n + 1, n + 2, or n + 3 
(even in the case n + 2 = 2k ), the result follows. o 

We can now prove Theorem 1. We have M1 = 1, and by Lemma 1 and 
formula (2), 

Mn-_MnI mod2, n> 1. 

The result now follows trivially, by induction. 
The next lemma is considerably more difficult to prove. 

Lemma 2. If n > 9s - 3, then T3(n) _ O mod 32s. 
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Proof. We shall prove inductively the compound proposition: If n > 9s - 3, 
then z3(n) 0 0 mod 32s, and for n _1 mod 3, 

T3(n)=- T3(n - 1) mod 32s+1 

This proposition may be verified by direct computation for s = 1, 2. For 
brevity, let Tn now denote z3(n). Iteration of the fundamental recursion 

n= Tn-1 + (n - 1)(n -2)Tn-3 

gives 

(6) Tn= x Tn7 + y Tn8 + z Tn9, 
where 

x=x(n) = 3n4 -42n3+210n2-441n+351, 

y = y(n) = 3n4 - 54n3 + 342n2 - 903n + 882, 

z = z(n) = n6 - 27n5 + 289n4 - 1569n3 + 4579n2 - 6927n + 4536. 

Suppose that n > 9(s + 1) - 3. Then by the induction hypothesis, Tn-7, Tn-8, 
and Tn-9 are all divisible by 32s; and we wish to show that Tn 0 0 mod 32s+2. 
So let k = 2s, Tn-7 = 3ka, Tn-8 = 3kb, Tn-9 = 3kc. We must show that 

xa+yb+zc=-O mod9. 

Working modulo 9, we have 

x 3n4 + 3n3 + 3n2, 

y 3n4 - 3n, 

z n6 + n4 - 3n3 - 2n2 + 3n. 

It is readily verified that z 0 0 mod 9 for all n and that x =-y 0 mod 9 
unless n _ 2 mod 3. So let n _ 2 mod 3. Then Tn -3a + 6b Omod 9 
requires a -b mod 3; i.e., Tn-7 _ Tn-8 mod 3k+1 . By virtue of (6), this last 
congruence becomes 

xITn_14 +Y1Tns15 + ZlTnl6 

-x2Tn-5 +Y2Tn-16 + z2Tn17 mod 3k+1, 

where we do not bother to write down the coefficients explicitly, but note that 
xl, y , z1 are to be evaluated at n - 7 =1 mod 3, and x2, Y2, Z2 are to be 
evaluated at n - 8 0 0 mod 3. By the induction hypothesis, Tn-l14,, Tn-17 
are all divisible by 3k2 . It is a simple matter to show that x(m) 0 mod 27 
when m 0 0 or 1 mod 3, and that y(m) 0 0 mod 27 when m 1 mod 3. 
Thus, it remains to prove that 

(Z1-Y2)Tn-16Z2 Tn-17 mod 3k+1. 

Let Tn-16 = 3k2a, Tn-17 = 3k2b. By the induction hypothesis, Tn-16 
Tn-17 mod 3k1, which implies that a b mod 3. But Z2 0 mod 9, and 

zi(n + ) - Y2(n) = n6 - 21n5 + 166n4 - 609n3 + 1009n2 - 546n 

_ n6 - 3n5 + 4n4 - 6n3 + n2 - 6n mod 9, 

which is clearly 0 0 mod 9 when n- 0 mod 3. This completes the proof. 0 

We use this lemma to prove 
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Lemma 3. The number z3(n)3 contains a higher power of 3 in its prime power 
factorization than does n !, for all n > 2. 
Proof. Let 3Y be the exact power of 3 dividing n!, and let 3k be the largest 
power of 3 less than or equal to n, so that 

rn= [3]+ [32 +.-+ 3] 

Then r, < (n - 1)/2, with equality only when n = 3k. Suppose that n 6 
mod 9, and s = (n + 3)/9. By Lemma 2, 

T3 (n=)3 0 mod 3(6n+18)/9 

But (6n+18)/9 > rj for j= n, n+1,..., n+8 and n > 9. Direct 
computation verifies the lemma for n = 1, 2, ..., 9. This completes the 
proof. 0 

We can now prove Theorem 2. Suppose, first, that C2 does not occur as a 
factor in the free product decomposition of G. Then if p is a prime > 2 such 
that Cp does occur as a factor, the fact that Tp(l) = Tp(2) = 1 together with 
Lemma 3 implies that 

(7) Mn=2M, I + Mn-2 mod3, n > 2, 

with initial values M1 _= 1 mod 3, M2 0 mod 3. This linear recurring 
sequence has period 8 and produces the values 

1, 0, 1, 2, 2, O 1, 1, O ... 

so that Mn =0mod 3 if and only if n--2 or 6 mod 8; or what is the same 
thing, if and only if n 2 mod 4. 

Now suppose that C2k does occur as a factor in the free product decomposi- 
tion of G. Formula (7) is affected by this and becomes instead 

(8) Mn-2MnI + 2kMn-2 mod3, n > 2, 

with initial values M1 1_ mod 3, M2 =_ 2k -1 mod 3. If k is even, the 
recurrence is unaffected and the desired conclusion holds. If k is odd, however, 
we find in this case that all the Mn satisfy Mn _ 1 mod 3. This completes the 
proof. 

4. CONJECTURES 

We conclude this paper by listing some plausible conjectures, which are 
backed up by some massive calculations. 

Conjecture 1. If C22 occurs as a factor in the free product decomposition of G, 
then Mn is oddfor all n. 

Conjecture 2. Let G = C2 * Cp,* *CPk, where pi > p for all i. Then the 
residue of Mn modulo p for G is the same as for the group Cp, and this is 
given recursively by 

p-l 1 
(9) Mn---E - . E Mn p+i modp, n > p -1 

Thus, for example, the group C22 * C32 has all Mn odd, and Mn 0 mod 3 
if and only if n_ 2 mod 4. 
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Conjecture 3. Let Pi, P2 be primes, and suppose that Pi - 1 mod q, where q 
is a prime. Let G = Cp1 * CP2 . Then Mn-O mod q for all n such that n 1 
mod q, n 0 P2 mod q. 

APPENDIX 

TABLE 1 
The function Mn is the number of subgroups of index n of the Hecke 
group H(4 1), the free product of a cyclic group of order 2 and a cyclic 
group of order 41 * Mn is 1 for n = 1, 2, and is O for n =3, 4,... ,40. 

n Mn 

41 500105497690148365394164736 
42 3052656650067685193871808512 
43 9189598724708303387683020800 
44 18185704908693293295620341760 
45 26605567147947965997877324800 
46 30684062537576457523098011648 
47 29046727489502070108332322816 
48 23206310044391063713060454400 
49 15965502174441030847895051520 
50 9604993297362220185057344000 
51 5113247635955732660626956288 
52 2431991845463452422846365696 
53 1041366754320207575485721600 
54 404062292289825254368143360 
55 142797586378688058113331200 
56 46177414574549290217127936 
57 13711274707917574713174912 
58 3750965560902368820960000 
59 947527667243948602905600 
60 221587270685813769984000 
61 48030419173229974715520 
62 9669193392957415299840 
63 1808183585903333184000 
64 314645432937402777600 
65 50898945451150836000 
66 7667062835484926016 
67 1072808269367542272 
68 139716581918028800 
69 16858019231136960 
70 1890020973276800 
71 195302218611968 
72 18695344352256 
73 1634310005900 
74 131754038520 
75 9541116000 
76 633442368 
77 36592556 
78 1926600 
79 82160 
80 3200 
81 81 
82 542443923271892169723911087435440323085660066294811429302173698 
83 4719313572641000369499585833970161707226694837279245830706954240 
84 20394558391041910084364370737774577370079277452472143590761431040 
85 58366814703260040549315958464995086264884454105320124609304985600 
86 124437583317103197230808365069305154113452274534860785787590410240 
87 210796692105067676310277499630992571656008299258349131115440111616 
88 295525242459188893735690544829860554750241649011037383009721384960 
89 352647113397445563325134294321169800442721432180072037816876400640 
90 36560901845074229314906325863787721762641746502319977851551744-000 
91 334520997815810176042582916043167517149758918629609968362271539200 
92 273472417847956512216462005531448828091591579380023778382918451200 
93 201748067392705380123380252578618239256892196807820427837429514240 
94 135416412488552276293181468005171653646550381107918875734963650560 
95 83268423490801113887128378022781441560556679176648989993861120000 
96 47181037122994202406619926137577333046941929607442593668608819200 
97 24757449861030329499521590344703990734983602083960099275373281280 
98 12083167101655322150101011754513036933215073150832541218916597760 
99 5506054103469592601355901745089186309104848528304523538532925440 

100 2350378790138361059233610111228341650466688830421212035809280000 
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